

3rd International Olympiad on Astronomy and Astrophysics

Theoretical Competition

Long Problems

Problem 16: High Altitude Projectile (45 points)

A projectile which initially is put on the surface of the Earth at the sea level is launched with the initial speed of $v_{\circ} = \sqrt{(GM/R)}$ and with the projecting angle (with respect to the local horizon) of $\theta = \frac{\pi}{6}$. M and R are the mass and radius of the Earth respectively. Ignore the air resistance and rotation of the Earth.

- a) Show that the orbit of the projectile is an ellipse with a semi-major axis of $a = R$.
- b) Calculate the highest altitude of the projectile with respect to the Earth surface (in the unit of the Earth radius).
- c) What is the range of the projectile (distance between launching point and falling point)?
- d) What is eccentricity (e) of the ellipse?
- e) Find the flying time for the projectile.

Problem 17: Apparent number density of stars in the Galaxy (45 points)

Let us model the number density of stars in the disk of Milky Way Galaxy with a simple exponential function of $n = n_0 \exp(-\frac{r - R_0}{R_d})$, where r represents the distance from the center of the Galaxy, R_0 is the distance of the Sun from the center of the Galaxy, R_d is the typical size of disk and n_0 is the stellar density of disk at the position of the Sun. An astronomer observes the center of the Galaxy within a small field of view. We take a particular type of Red giant stars (red clump) as the standard candles for the observation with approximately constant absolute magnitude of $M = -0.2$,

- a) Considering a limiting magnitude of $m = 18$ for a telescope, calculate the maximum distance that telescope can detect the red clump stars. For simplicity we ignore the presence of interstellar medium so there is no extinction.
- b) Assume an extinction of 0.70 mag/kpc for the interstellar medium. Repeat the calculation as done in the part (a) and obtain a rough number for the maximum distance these red giant stars can be observed.
- c) Give an expression for the number of these red giant stars per magnitude within a solid angle of Ω that we can observe with apparent magnitude in the range of m and $m+\Delta m$, (i.e. $\frac{\Delta N}{\Delta m}$). Red giant stars contribute f of overall stars. In this part assume no extinction in the interstellar medium as part (a).

Hint : the Tylor expansion of $y = \log_{10} x$ is :

$$
y = y_0 + \frac{1}{\ln 10} \frac{x - x_0}{x}
$$

3rd International Olympiad on Astronomy and Astrophysics

Theoretical Competition

Long Problems

Solutions

Solution 16:

a) Total energy of the projectile is

$$
E = \frac{1}{2}mv_{\circ}^{2} - \frac{GMm}{R} = -\frac{GMm}{2R} < 0
$$

 $E < 0$ means that orbit might be ellipse or circle. As $\theta > 0$, the orbit is an ellipse.

Total energy for an ellipse is

$$
E = -\frac{GMm}{2a}
$$

$$
a = R
$$

b) In figure (1) we have

$$
OA + O'A = 2a
$$

$$
0\ A = a
$$

In *OAO'* triangle it is obvious that

$$
OC = CO'
$$

Then C must be the center of the ellipse with the initial velocity vector $v_{\rm s}$ parallel to the ellipse major-axis (LH) .

Figure (2)

In figure (2)
\n
$$
HM = CH - CM = a - (R - R \sin \theta) = R - R + R \sin \theta = R \sin \theta = \frac{R}{2}
$$

c) Range of the projectile is \widehat{AB}

$$
\widehat{AB} = 2\left(\frac{\pi}{2} - \theta\right)R = (\pi - 2\theta)R = \frac{2\pi}{3}R
$$

d) Start with ellipse equation in polar coordinates

$$
r = \frac{a(1 - e^2)}{1 + e\cos\varphi}
$$

For point A

$$
R = \frac{R(1 - e^2)}{1 - e\cos(\frac{\pi}{2} + \theta)}
$$

$$
e = \sin\theta = \frac{1}{2}
$$

Figure 3

e) Using Kepler's second law

$$
\frac{\Delta S}{S_0} = \frac{\Delta T}{T}
$$

$$
\Delta S = S_{AOBH} = S_{AAOB} + \frac{S_0}{2}
$$

$$
= 2 \times \frac{\text{bae}}{2} + \frac{\pi \text{ab}}{2} = \text{bae} + \frac{\pi \text{ab}}{2}
$$

$$
\frac{\Delta S}{S} = \frac{\text{bae} + \frac{\pi \text{ab}}{2}}{\pi \text{ab}} = \frac{e + \frac{\pi}{2}}{\pi} = \frac{0.5 + \frac{\pi}{2}}{\pi}
$$

Kepler's third law

$$
T = \sqrt{\frac{4\pi^2 R^3}{GM}} = 84.5 \text{ min}
$$

$$
\Delta T = T \times \frac{0.5 + \frac{\pi}{2}}{\pi} = 55.7 \text{ min}
$$

Solution 17:

a) Relation between the apparent and absolute magnitude is given by

$$
m = M + 5\log\left(\frac{d}{10}\right)
$$

where d is in terms of parsec. Substituting $m = 18$ and $M = -0.2$, results in

$$
d = 4.37 \times 10^4 \text{ pc}
$$

b) Adding the term for the extinction, changes the magnitude distance relation as follows

$$
m = M + 0.7x + 5\log(100x)
$$

where x is given in terms of kilo parsec. To have a rough value for x , after substituting m and M , this equation reduces to

$$
18.2 = 0.7x + 5\log(x)
$$

To solve this equation, we examine

$$
x = 5, 5.5, 6, 6.5
$$

where the best value is obtained roughly $x \approx 6.1$ kpc.

c) For a solid angle Ω , the number of observed red clump stars at the distance in the range of x and $x + \Delta x$ is given by

$$
\Delta N = \Omega x^2 n(x) f \Delta x
$$

So the number of stars observed in Δx is given by

$$
\frac{\Delta N}{\Delta x} = \Omega x^2 n(x) f
$$

From the relation between the distance and apparent magnitude we have

$$
m_1 = M + 5log\left(\frac{x}{10}\right)
$$

$$
m_2 = M + 5log\left(\frac{x + \Delta x}{10}\right)
$$

$$
\Delta m = 5log\left(\frac{x + \Delta x}{x}\right)
$$

$$
\Delta m = 5log\left(1 + \frac{\Delta x}{x}\right)
$$

$$
\Delta m = \frac{5}{\ln 10} \ln \left(1 + \frac{\Delta x}{x} \right)
$$

$$
\Delta m = \frac{5}{\ln 10} \left(\frac{\Delta x}{x} \right)
$$

Replacing Δx with Δm , results in

$$
\frac{\Delta N}{\Delta m} = \frac{\Delta N}{\Delta x} \times \frac{\Delta x}{\Delta m}
$$

So the number of stars for a given magnitude is obtained by

$$
\frac{\Delta N}{\Delta m} = \frac{\Omega \ln 10}{5} n(x) x^3 f
$$

Finally we substituting x in terms of apparent magnitude using $x = 10^{\frac{m-9.78}{5}}$. In the case of no extinction, we are able to observe the Galaxy beyond the center. So $\frac{dN}{dm}$ has two terms in $x < R_0$ and $x > R_0$. The relation between x and r for these two cases are

$$
x = R_0 - r \qquad x < R_0
$$

and

$$
x = R_0 + r \qquad x > R_0
$$

So in general we can write $\frac{\Delta N}{\Delta m}$ as

$$
\frac{\Delta N}{\Delta m} = \frac{\Omega \ln 10}{5} n_0 \exp \left(\frac{10^{\frac{m-9.78}{5}}}{R_d} \right) \times 10^{-\frac{3(m-9.78)}{5}} f \qquad x < R_0
$$

$$
\frac{\Delta N}{\Delta m} = \frac{\Omega \ln 10}{5} n_0 \exp \left(\frac{2R_0}{R_d} \right) \exp \left(-\frac{10^{\frac{m-9.78}{5}}}{R_d} \right) \times 10^{\frac{3(m-9.78)}{5}} f \Theta(x_0 - x) \ x > R_0
$$

where $\Theta(x)$ is the step function and $x_0 = 44.1$ kpc is the maximum observable distance.